If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+8x-52=0
a = 3; b = 8; c = -52;
Δ = b2-4ac
Δ = 82-4·3·(-52)
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{43}}{2*3}=\frac{-8-4\sqrt{43}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{43}}{2*3}=\frac{-8+4\sqrt{43}}{6} $
| -8(x-3)-30x=-6 | | 4x+6=3(4x+6) | | 2x-2x+1=5 | | 0.06(y−5)+0.16y=0.18y−0.01(70) | | 11x+5=8x-16 | | 3x+9x-6+4x=x | | 6–x=3–x. | | x+35=36x | | X-4/3=x-28/7 | | 5x-10+2x-5=111 | | 6=8x+18 | | x=2=-6 | | 12x+4.536*10^-8x=4316 | | 8(y+3)=13y-11 | | 65×13t=0 | | 8x-5+2x-14=11 | | 1=0.2x-0.7x-29 | | 6g=108 | | -9n+16=-8n-11 | | 8g=136 | | 3x+5x-2+18x=180 | | 6=54+2u | | 3x+4x=72 | | -2b^2+28b=0 | | 22+2x=5x+1 | | 5/6r=4.3/5 | | m^2+22m-5=0 | | 56y=16 | | 8f-13=13-8f | | 17g=51 | | 10x^2-3x+38=0 | | 10=-31+j |